
Programmation Tacticals

Florent Kirchner

National Institute of Aerospace
fkirchne@nianet.org

1 Tune-up

The �rst procedural theorem prover, Edinburg LCF [2], also introduced notion of
strategies or tacticals, i.e., operators that combine the elementary proof tactics.
Its descendants, PVS [3], Coq [1] and all the procedural theorem provers used
their own version of the original set of strategies, mostly empirically build. In
this paper we intend to expose how we extend the PVS language to a point where
it can be viewed as a quite powerful programming language. The �nality of this
work is to provide a clear basis to allow users to e�ciently program complex
strategies.

Prerequisite: Ben DiVito's patterns for PVS [4].

1.1 Formalism

It seems interesting to be able to give reduction rules for each of the strategies
we are exposing, thus implying the rapid presentation of a framework.

As in all reduction semantics, we need to de�ne some reduction rules, a
reduction context and some values. Here goes:

the reduction relation transforms a command e containing strategies and
tacticals into a simpler command e′, by reducting the head strategy. It writes:

e / τ
ε−→ e′ / τ ,

ε−→ denoting a head reduction, and τ being the proof context (see Ap-
pendix A.1 page 9 for detailed information about the proof context).

contexts de�ne where reductions are allowed though the context rule:

e / τ
ε−→ e′ / τ

C[e] / τ −→ C[e′] / τ .

In our case, we perform leftmost innermost reductions. Their detailed ex-
pression is given by the grammar exposed in Appendix A.2 page 10.

values noted v, they are the PVS's tactics, and two additional combinators
∨m(x)

τ and ∧m(x)
τ whose description can be found in Appendix A.3 page 10.

2 Existing strategies

step ¶ Not explicitly an element of the syntax, ¶ marks the end of a command.
It triggers the evaluation of the tactics and does the �nal parameter reset.
Reduction Rule:

v ¶ / τ
ε−→ (v / τ). raisePointerToLeaf() . setProgress(false) .

(if lexpr step1 step2) The lisp term lexpr is evaluated, if it reduces to nil

then step2 is applied. Else step1 is applied.
Usage: (if *-* (flatten -) (split +)) : if *-* (the list of formulas in the
antecedent of the current goal) is not empty then apply disjunctive simpli�-
cation to the antecedent, else apply conjunctive splitting to the consequent.
Reduction Rule:

(if t v1 v2) / τ
ε−→ if t = nil then v2 / τ

else v1 / τ .

(let ((x1 lexpr1)...(xn lexprn)) step) The local variable binding strategy.
The symbols xi are binded to the lisp expressions lexpri in the latter bind-
ings and in step.
Usage: (let ((form-num car *+*)) (lift-if form-num)) fetches the �rst
formula in the consequent of the current goal, and lifts the branching struc-
ture in this formula.
Reduction Rule:

(let ((x1 t1)...(xn tn)) e) / τ
ε−→

e[x1 ←[t1, . . . , xn ←[tn] / τ .

(try step1 step2 step3) This strategy combines a branching facility triggered
by the a progress condition, with an error catching functionnality. It applies
step1 to the current goal, it this shows a progress then it applies step2, else
it applies step3. Moreover, if step2 fails then this strategy returns skip.
Usage: (try (flatten) (prop) (split)) applies (flatten) to the cur-
rent goal; if it generates subgoals then the propositional simpli�cation tactic
is applied, else (split) is.
Reduction Rule:

(try v1 v2 v3) / τ
ε−→ let χ = (v1 / τ) in

if χ. hasProgressed()

then if (v2 / χ) = ⊥n then (skip) / τ

else (v1 ∨τ v2) / τ

else v3 / τ .

(then &rest steps) Applies all the steps in sequence, each to all the subgoals
generated by the application of the previous.

Usage: (then (flatten) (beta)) applies the disjunctive simpli�cation to
the current goal, and then performs β-reduction on all the generated sub-
goals.
Reduction Rule:

(then v1...vn) / τ
ε−→ v1 ∨τ (then v2 . . . vn) / τ .

(then@ &rest steps) Like then this strategy applies the steps in sequence,
but each of them is applied to the �rst of the subgoals generated by the
application of the previous.
Usage: (then (flatten) (beta)) applies the disjunctive simpli�cation to
the current goal, and then performs β-reduction on the �rst of the generated
subgoals.
Reduction Rule:

(then v1...vn) / τ
ε−→ v1 ∨raisePointerToLeaf()τ (then v2 . . . vn) / τ .

(repeat step) step is applied to the current goal, if it generates any subgoal
then it is recursively applied to the �rst of these subgoals. The repetition
stops when an application of step has no e�ect.
Usage: (repeat (do-rewrite)) repeatedly applies rewrite steps along the
main proof branch until no progress results from it.
Reduction Rule:

(repeat v) / τ
ε−→ if (v / τ). hasProgressed()

then
[
v ∨raisePointerToLeaf()τ (repeat v)

]
/ τ

else (skip) / τ .

(repeat* step) Like repeat, this strategy repeats step, but on all the previ-
ously generated subgoals.
Usage: (repeat* (do-rewrite)) repeatedly applies rewrite steps along all
branches until no progress results from it.
Reduction Rule:

(repeat* v) / τ
ε−→ if (v / τ). hasProgressed()

then
[
v ∨τ (repeat* v)

]
/ τ

else (skip) / τ .

(spread step0 (step1 . . . stepN)) First applies step0 and then each of the stepI
to one of the subgoals generated.
Usage: (spread (flatten) ((ground) (assert) (lift-if))) applies the
disjunctive simpli�cation step to the current goal, then apply (ground) to
the �rst generated subgoal, (assert) to the second and (lift-if) to the
third.
Reduction Rule:

(spread v0 (v1 . . . vn)) / τ
ε−→

let χ = (
∧

(v0, . . . , vn) / τ) in
if χ = ? then (spread v0 (v1 . . . vn−1)) / τ

else if χ. pointNextSibling() = ?

then
[∧

(v0, . . . , vn) ∧lowerPointer(2)τ (skip)
]

/ τ

else (spread v0 (v1 . . . vn−1vn(skip))) / τ .

(branch step0 (step1 . . . stepN)) This strategy behaves as spread, but if there
are M > N subgoals generated by step0 then it will apply stepN to all the
subgoals N + 1, N + 2, . . .M .
Usage: (branch (flatten) ((ground) (assert))) applies the disjunctive
simpli�cation step to the current goal, then apply (ground) to the �rst
generated subgoal, and (assert) to the rest of the subgoals.
Reduction Rule:

(branch v0 (v1 . . . vn−1vn)) / τ
ε−→

let χ = (
∧

(v0, . . . , vn) / τ) in
if χ = ? then (branch v0 (v1 . . . vn−1)) / τ

else if χ. pointNextSibling() = ?

then
[∧

(v0, . . . , vn) ∧lowerPointer(2)τ (skip)
]

/ τ

else (branch v0 (v1 . . . vn−1vnvn)) / τ .

(try-branch step1 (step1′ . . . stepN ′) step2) A combination of the try and
the branch strategies, try-branch applies step1 to the current goal, and in
case it generated subgoals it applies each of the stepI ′ to one of the subgoals.
Else it applies step2. As for try, this strategy catches any failure that would
arise from the application of any of the stepI.
Usage: (try-branch (flatten) ((ground) (assert)) (split)) applies
(flatten) to the current goal. If it generated subgoals it applies (ground)

to the �rst of these subgoals and (assert) to the rest of the subgoals. Else
it applies (split).
Reduction Rule:

(try-branch v1 (v′1) v2) / τ ≡ (try v1 v′1 v2) / τ .

And:

(try-branch v1 (v′1 . . . v′n) v2) / τ
ε−→

let χ = (v1 / τ) in
if χ = ⊥n then (fail) / τ

else if χ. hasProgressed()

then if ((branch v1 (v′1 . . . v′n)) / τ) = ⊥n

then (skip) / τ

else (branch v1 (v′1 . . . v′n)) / τ

else v2 / τ .

3 New strategies

(match pvsterm ((pat1 -> step1)...(patN -> stepN))) Matches pvsterm
with each of the patterns pat i. On the �rst match found it returns the cor-
responding step, properly instancianted.
Usage: (match (! -2 R) (("%1 / %2") -> (rewrite-lemma "ndiv_lt" -2

("%1" "x" "%2" "b")))) matches the right-hand side of formula -2 with a
dividing pattern, if there is a match then it rewrites this formula with lemma
ndiv_lt (stating that the result of the euclidian division of x by b is lower
or equal to the corresponding real division).
Reduction Rule: Let ⊕ be the binary operator de�ned as:

σ1e1 ⊕ σ2e2 / τ −→ v1 / τ if the substitution σ1 is de�ned

and e1 / τ evaluates in v1;

−→ v2 / τ else and if σ2 is de�ned

and e2 / τ evaluates in v2;

−→ Idtac / τ else.

For all i ∈ {1, . . . , n}, σpi← [t is the substitution resulting from the matching
of t by pi (unde�ned if pi does not match t ; matching by always succeds
and yields the empty substitution).
Then:

(match t (pi _ ei)n
i=1) / τ

ε−→
⊕n

i=1 σpi←[t ei / τ .

(screen (...(apati,1...apat1,ni
\− cpati,1...cpat1,ni

-> stepi)...)) This strat-
egy matches the proof context against a set of patterns. The order of the
patterns is not decisive; #n designates the formula that was matched by the
nth pattern. When a match is found, it applies the corresponding step, prop-
erly instanciated. If the \− symbol is omited, the pattern will be checked
against consequent and antecedent formulas.
Usage: (screen (("%1 * %1 = 0" \− "%2 > %3" -> (rewrite "sqrt_1"

"#1")) ("" -> (grind)))) matches the current goal; if the antecedent con-
tains a formula with a squared term equated to 0 and the consequent contains
a formula with a �greater than� symbol, then it rewrites the formula matched
by the �rst pattern with a lemma concerning null squares. If no match is
found satisfying these conditions, it applies (grind).
Reduction Rule: Here a simpli�ed rule is presented, the complete rule being
a simple (but space consuming) extension.

(screen (hpi ` pi _ ei)n
i=1) / τ . (. . . Aj . . . ` B) ε−→⊕n

i=1 σhpi←[Aj σ
′
pi←[B ei / τ .

If this does not succeed then the context progression rule is used instead:

(screen (hpi ` pi _ ei)n
i=1) / τ . (. . . Aj . . . ` B) ε−→

(screen (hpi ` pi _ ei)n
i=1) / τ . (. . . Aj−1 . . . ` B) .

(throw tag) fails with the name tag.
Usage: (throw "fatalError") throws an error with the name �fatalError�.
Reduction Rule:

(throw t) / τ ↪→ ⊥t

(catch step1 &optional tag step2) If step1 throws an error whose name cor-
responds to tag then run step2. If no tag is provided or if the tag is the
empty string then the strategy catches any error that step1 creates. If no
step2 is provided then it is assumed to be a (skip).
Usage: (catch (case "x > 0") "" (split)) applies a case analysis on the
current sequent, on the variable x. If this fails then it applies the conjunctive
splitting rule.
Reduction Rule:

(catch v1 t v2) / τ
ε−→ if (v1 / τ) = ⊥t then v2 / τ

else if (v1 / τ) = ⊥u then (throw u) / τ

else v1 / τ .

(try! step1 step2 step3) This is a �strict� try, that does not do error handling.
If step1 generates subgoals, then step2 is applied to all of them, else step3
is applied.
Usage: (try! (flatten) (propax) (split)) applies (flatten) to the cur-
rent goal; if it generates subgoals then the (propax) tactic is applied, else
(split) is. If any of these tactics fail, it fails.
Reduction Rule:

(try! v1 v2 v3) / τ
ε−→ let χ = (v1 / τ) in

if χ. hasProgressed()

then (v1 ∨τ v2) / τ

else v3 / τ .

(when lterm step1 &rest step2...stepN) If the lisp term lterm evaluates in
nil then this strategy returns (skip). Else it applies step1. . . stepN in a se-
quence alobg the proof's main branch.
Usage: (when (done-subgoals *ps*) (skolem!)) applies variable skolem-
ization to the current goal if there are no proved subgoals in the proof state.
Reduction Rule:

(when t v1...v2) / τ
ε−→ if t = nil then (skip) / τ

else (then@ v1...vn) / τ .

(when* lterm step1 &rest step2...stepN) If the lisp term lterm evaluates
in nil then this strategy returns (skip). Else it applies step1. . . stepN in an
all-branches sequence.
Usage: (when* (done-subgoals *ps*) (skolem!)) applies variable skolem-
ization to the current goal if there are no proved subgoals in the proof state.
Reduction Rule:

(when* t v1...v2) / τ
ε−→ if t = nil then (skip) / τ

else (then v1...vn) / τ .

(while lterm step1 &rest step2...stepN) When the lisp term lterm is non-
nil, this strategy applies repeatedly step1. . . stepN along the main branch
of the proof.
Usage: (while (pending-subgoals *ps*) (skolem!)) applies variable skolem-
ization to the current goal, and then to each of the �rst subgoal generated,
as long as there are unproved subgoals in the proof state and that the proof
progresses.
Reduction Rule:

(while t v1...v2) / τ
ε−→ (repeat (when t v1...vn)) / τ .

(while* lterm step1 &rest step2...stepN) This strategy behaves just as while,
but eventually repeats step1. . . stepN on all the branches of the proof.
Usage: (while* (pending-subgoals *ps*) (skolem!)) applies variable skolem-
ization to the current goal, and then simultaneously to all of the subgoals
generated, as long as there are unproved subgoals in the proof state and that
the proof progresses.
Reduction Rule:

(while t v1...v2) / τ
ε−→ (repeat* (when t v1...vn)) / τ .

(for lint step) Here lint is a lisp integer. This strategy repeats step, lint times,
along the main branch of the proof. If lint is negative, the strategy is equiv-
alent to the (repeat step) strategy.
Usage: (for 3 (beta)) applies the β-reduction rule three times, �rst on the
current goal and then on the �rst of the generated subgoals.
Reduction Rule

(for n v) / τ
ε−→ if n = 0 then (skip) / τ

else if n < 0 then (repeat step) / τ

else (then@ v (for@ (n− 1) v)) / τ .

(for* lint step) Behaves as the for strategy, but applies step on all the branches
of the proof.
Usage: (for* 3 (beta)) applies the β-reduction rule three times, �rst on
the current goal and then on all of the generated subgoals.

Reduction Rule

(for* n v) / τ
ε−→ if n = 0 then (skip) / τ

else if n < 0 then (repeat* step) / τ

else (then v (for@ (n− 1) v)) / τ .

(first (step1...stepN)) Applies the �rst of the steps that does not fail. If no
step full�ll such a condition, the strategy fails.
Usage: (first (case "y > 0") (bddsimp) (skip)) tries to apply the case
analysis command to the current goal, if it fails it tries the propositional sim-
pli�cation. If this also fails, it applies the (skip) tactic (which cannot fail).
Reduction Rule: We give a recursive de�nition of the reduction rule:

(first ()) / τ
ε−→ (fail) / τ .

(first (v1...vn)) / τ
ε−→ if (v1 / τ) 6= ⊥ then v1 / τ

else (first (v2...vn)) / τ .

(solve (step1...stepN)) This strategy selects and applies the �rst of its ar-
guments that will prove the current goal. If it has no such argument, it fails.

Usage: (first (case "y > 0") (bddsimp)) tries to apply the case analy-
sis command to the current goal, if it does not completely prove the current
goal it tries the propositional simpli�cation. If this also fails to completely
prove the current goal, it fails.
Reduction Rule: We give a recursive de�nition of the reduction rule:

(solve ()) / τ
ε−→ (fail) / τ .

(solve (v1...vn)) / τ
ε−→ if (v1 / τ). isActiveTreeProved() then v1 / τ

else (solve (v2...vn)) / τ .

(piks) is not a strategy as we de�ned them since it does not act as a combi-
nator of tactics, but more as a tactic. It does not do anything special, but
does not either trigger the �No change on...� reaction of PVS. Basically,
(piks) is used in strategy writing to deceive the progress-testing strategies.

Usage: (try (piks) (flatten-disjunct) (skip)) is a simple way to catch
any error generated by the application of the controlled disjunctive simpli�-
cation rule.
Reduction Rule:

(piks) / τ ↪→ τ . setProgress(true)

4 Conclusion

This work provides some powerful strategies to enables e�cient strategy creation.

A Framework and notations

A.1 The proof context

First, a sequent is represented as Γ ` ∆, where Γ is the antecedent and ∆ is
the consequent, each being a list of formulas1. Latin letters A, B, etc. represent
individual formulas.

The proof context is considered as a collection of sequents organized in a tree
of sequents, its leaves representing the sequents that are currently being proved.
A leaf, when modi�ed by some command, becomes the father of the sequents
created by this command: the nodes of the tree of sequents are the �old� sequents.
Thus, the tree of sequents keeps trace of the proof progression. Incidentally, one
has to consider the number of features that are relied to the proof context (state
of the proof, proved branches, goal numbering, etc.) Hence we blend a simpli�ed
object-oriented structure with the tree representation. We write O. m(x̄) for the
invocation of the method m of object O with the list of parameters x̄. Methods
modifying an object return a new object, whereas methods that test properties
leave the object unchanged. Thus, a method call O. m(x̄) is a synonymous for
the function call m(x̄, O), and the objects could also be seen as records. The
letter τ denotes a proof context object; we distinguish a few particular proof
contexts:

� > is a proof context that is completely proved.
� ⊥s stands for a failed proof context (the string s codes for an error tag).
� And ? is the empty proof context, i.e., a proof context object hosting an

empty tree.

Follows the description of the attributes and methods of τ .

� Attributes:
• τ . seq_tree: the tree of sequents.
• τ . active: pointer to the active subtree of sequents, i.e., the subtree on
which the next command will take effect. In case it is a leaf, then τ . active
represents a sequent Γ ` ∆, and we will write τ . Γ ` ∆ .

• τ . progress: this is a �ag raised when the tree of sequents has gone
through changes.

� Methods:
• τ . addLeafs(Γ1 ` ∆1, . . . , Γn ` ∆n): this method adds n leafs to the tree.
In the new tree, the new sequents Γi ` ∆i, i ∈ {1, . . . , n}, will be leaves,
and the former active leaf of the old tree will become their common node.

• τ . lowerPointer(i): moves the active pointer down (towards the root) in
the tree, i being the depth of the move.

• τ . raisePointerToLeaf(): moves the pointer up to the �rst unproved leaf
of the tree.

1 The semantics presented in this paper does not distinguish between sequents with
permuted formulas. This limitation is not problematic since we focus on tacticals,
which do not require formula-level knowledge.

• τ . pointNextSibling(): moves the pointer to the closest unproved leaf,
sibling of the active sequent. If there is no such sibling, the pointer is set
to a default empty value, which is represented by the method returning
the empty proof context ?.

• τ . setProgress(b): sets the corresponding �ag to b.
• τ . hasProgressed(): returns the value of the progress �ag.
• τ . setLeafProved(): the active leafs are labeled as proved. If there are no
unproved sequents left, the proof is �nished (i.e., τ . setLeafProved() =
>).

• τ . isActiveTreeProved(): returns true if all the leafs in the active subtree
are labeled as proved, false otherwise.

A.2 The context grammar

C ::= []
| C ∨fτ e | v ∨fτ C

| C ∧fτ e | v ∧fτ C

| C ¶

| (if t C e1)

| (if t e1 C)

| (try C e2 e3)

| (try v1 C v3)

| (try v1 v2 C)

| (repeat C)

| (repeat* C)

| (spread C (e′1 . . . e′n))
| (spread v1 (C . . . e′n))
| . . . | (spread v1 (v′1 . . . C))
| (try-branch C (e′1 . . . e′n) e2)

| (try-branch v1 (C . . . e′n) e2)

| . . . | (try-branch v1 (v′1 . . . C) e2)

| (try-branch v1 (v′1 . . . v′n) C) .

A.3 The ∧m(x)
τ and ∨m(x)

τ special tactics

We de�ne two operators to express some fundamental operations:

∨m(x̄)
τ : tactic× tactic −→ tactic

∧m(x̄)
τ : tactic× tactic −→ tactic .

The �rst operator ∨m(x̄)
τ , applies two tactics and the method m(x̄) in sequence,

unless the �rst tactic has failed or proved the subtree. The second operator,
∧m(x̄)

τ , is also a sequential command, but only stops if the proof has failed.
Both these operators will be added as values of our semantics. Using these two
operators, one can build a macro

∧
that applies the �rst element of a list of

tactics to a goal, and each of the next elements to a subgoal:∧
: tacticn −→ tactic ,

recursively de�ned as:∧
(p0, . . . , pn) −→

∧
(p1, . . . , pn−1) ∧pointNextSibling()τ pn∧

(p0, p1) −→ p0 ∨raisePointerToLeafs()τ p1 .

Using the de�nition of tactics reductions:

p / τ ↪→ τ ' ,

we now can give a formal de�nition of the aforementioned operators:

p1 ∨m(x̄)
τ p2 / τ ↪→ let χ = p1 / τ in

if χ. isActiveTreeProved() then χ

else if (χ = ⊥n) then χ

else p2 / χ. m(x̄) ,

and:

p1 ∧m(x̄)
τ p2 / τ ↪→ let χ = p1 / τ in

if (χ = ⊥n) then p1

else p2 / χ.m(x̄) .

When no method is provided for the two operators, m is assumed to be the
identity method.

References

[1] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliatre, E. Giménez, H. Herbelin,
G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin, A. Saïbi, and B. Werner.
The Coq Proof Assistant Reference Manual � Version V6.1. Technical Report 0203,
INRIA, August 1997.

[2] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic

of Computation, volume 78 of lncs. sv, 1979.
[3] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover

Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, Septem-
ber 1999.

[4] Ben L. Di Vito. A PVS prover strategy package for common manipulations. Techni-
cal Report TM-2002-211647, Langley Research Center, Hampton, VA, April 2002.

Index

¶, 2

branch, 4

catch, 6

�rst, 8
for, 7
for*, 7

if, 2

let, 2

match, 5

piks, 8

repeat, 3

repeat*, 3

screen, 5
solve, 8
spread, 3

then, 2
then-arobase, 3
throw, 6
try, 2
try-bang, 6
try-branch, 4

when, 6
when*, 7
while, 7
while*, 7

